НАБЛІ́ЖАНАЕ ІНТЭГРАВА́ННЕ,

раздзел вылічальнай матэматыкі, які вывучае метады набліжанага вылічэння вызначаных інтэгралаў і набліжанага рашэння (інтэгравання) дыферэнцыяльных ураўненняў. Выкарыстоўваецца, калі дакладнае вылічэнне немагчыма або вельмі складанае.

Набліжанае вылічэнне вызначаных інтэгралаў выконваецца аналітычнымі і графічнымі (гл. Графічныя вылічэнні) метадамі, а таксама з дапамогай спец. прылад (планіметр, інтэгратар). Сярод аналітычных найб. пашыраны метады, заснаваныя на замене падынтэгральнай функцыі адрэзкам яе Тэйлара шэрагу, інтэрпаляцыйным паліномам (гл. квадратурная формула) і інш. Для многіх правіл інтэгравання складзены табліцы вузлоў і каэфіцыентаў квадратурных формул. Нявызначаныя інтэгралы зводзяць да вызначаных з пераменнай верхняй мяжой інтэгравання. Кратныя інтэгралы вылічваюць як паўторныя, з дапамогай кубатурных формул або спец. метадамі, напр., Монтэ-Карла метадам. Для набліжанага рашэння дыферэнцыяльных ураўненняў карыстаюцца пераважна лікавымі метадамі (Рунге—Кута, Эйлера, рознаснымі метадамі і інш.), якія дазваляюць даць рашэнне ў выглядзе табліцы. Аналітычнымі метадамі (напр., шэрагаў, Чаплыгіна, варыяцыйнымі) рашэнне выяўляецца ў аналітычным выглядзе; графічнымі метадамі — у выглядзе графіка. Існуюць таксама метады, заснаваныя на выкарыстанні аналагавых вылічальных машын.

Л.А.Янавіч.

т. 11, с. 88

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)